Pages

Sunday, February 14, 2021

Generating 3D Plots and Exporting the Geometry - An Example with Antenna Radiation in Matplotlib, PyVista and Blender

This was made starting from a Python script using Matplotlib. This post shows how. 

Discussion

Matplotlib is a great tool for generating beautiful 2D and 3D images quickly. 


However, sometimes its desirable to generate something more visual and appealing to help explain a concept more clearly. Often this is not possible in Matplotlib. Other tools must be used.  However, there is not facility in Matplotlib (as of 3.2.1) to export that plot surface for use in other tools. 
Fortunately, using almost the same syntax as Matplotlib, a 3D plot can be created in PyVista and exported in one of the common 3D file formation like stl, ply, or fbx. Once this is done, its possible to import into a tool like Blender and create a high quality rendering or animation to help explain a concept. 

This posting will cover the key steps in doing this and use the plotting of the radiation pattern of an antenna to help illustrate.


Setup

You'll need Python 3 with Matplotlib, PyVista, and Blender to replicate this. My personal setup uses the portable version of Python 3 and Blender.
  1. Install WinPython portable (https://winpython.github.io/)
  2. Use pypi to install PyVista (https://pypi.org/project/pyvista/)
  3. Install Blender portable (https://www.blender.org/download/ and chose the portable version)

Example

The full script for this example is at the end of the post. The key part of that the same data used for Matplotlib can be used in PyVista. In both cases, the data needs to be prepared in a 2D array of X, Y, and Z values. Then these values are passed to the plotting routines: plot_surface(X, Y, Z) for Matplotlib;  add_mesh, Plotter for visualization, and save_meshio to export the result in PyVista.

Matplotlib plotting



##################################################
### Plot the field using Matplotlib
##################################################

def SurfacePlot(Fields):
    """Plots 3D surface plot over given theta/phi range in Fields by calculating cartesian coordinate equivalent of spherical form."""

    print("Processing SurfacePlot...")

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    phiSize = Fields.shape[0]                                                                                   # Finds the phi & theta range
    thetaSize = Fields.shape[1]

    X = np.ones((phiSize, thetaSize))                                                                           # Prepare arrays to hold the cartesian coordinate data.
    Y = np.ones((phiSize, thetaSize))
    Z = np.ones((phiSize, thetaSize))

    for phi in range(phiSize):                                                                                  # Iterate over all phi/theta range
        for theta in range(thetaSize):
            e = Fields[phi][theta]

            xe, ye, ze = sph2cart1(e, math.radians(theta), math.radians(phi))                                   # Calculate cartesian coordinates

            X[phi, theta] = xe                                                                                  # Store cartesian coordinates
            Y[phi, theta] = ye
            Z[phi, theta] = ze

    ax.plot_surface(X, Y, Z, color='b')                                                                         # Plot surface
    plt.ylabel('Y')
    plt.xlabel('X')                                                                                             # Plot formatting
    plt.show()


PyVista plotting



##################################################
### Generate the same plot sureface as in Matplot lib and export as a ply file
##################################################
def PlotAndExport(Fields):
    phiSize = Fields.shape[0]                                                                                   # Finds the phi & theta range
    thetaSize = Fields.shape[1]

    X = np.ones((phiSize+1, thetaSize))                                                                           # Prepare arrays to hold the cartesian coordinate data.
    Y = np.ones((phiSize+1, thetaSize))
    Z = np.ones((phiSize+1, thetaSize))

    for phi in range(phiSize+1):                                                                                  # Iterate over all phi/theta range
        for theta in range(thetaSize):
            e = fields[phi%phiSize][theta]

            xe, ye, ze = sph2cart1(e, math.radians(theta), math.radians(phi))                                   # Calculate cartesian coordinates

            X[phi, theta] = xe                                                                                  # Store cartesian coordinates
            Y[phi, theta] = ye
            Z[phi, theta] = ze

    
    # create a mesh that can be displayed
    mesh = pv.StructuredGrid(X,Y,Z)
    
    # Show the result in a plotter window
    p = pv.Plotter()
    p.add_mesh(mesh)
    p.show()
    
    # save the mesh as a ply file, can be saved in many formats
    pv.save_meshio("mesh.ply",mesh)


The PyVista script exports a mesh using save_meshio. In this example, the mesh is saved as a ply format,  although a lot of other formats are supported (see HERE).  Once saved as a ply file, it can be imported into Blender using the File/Import/Stanford (ply) option. Once in Blender, other information can be added and the presentation dressed up. By the way, the animated gif at the top was made using GIMP. 

Tools


References


Full Script



# -*- coding: utf-8 -*-
################################################
##
## Adapted from REctPatch.py hosted on Github
##     https://gist.github.com/johngrantuk/73e0742fac6a6a17e7b42ae34cfde56e
##
## 2021, Feb 14
##
##
################################################

import math
import matplotlib.pyplot as plt
import numpy as np
from math import cos, sin, sqrt, atan2, acos
import pyvista as pv
    

##################################################
### utility functions
##################################################

def sph2cart1(r, th, phi):
  x = r * cos(phi) * sin(th)
  y = r * sin(phi) * sin(th)
  z = r * cos(th)

  return x, y, z
  
def cart2sph1(x, y, z):
  r = sqrt(x**2 + y**2 + z**2) + 1e-15
  th = acos(z / r)
  phi = atan2(y, x)

  return r, th, phi


##################################################
### function to predict the field strength in a given direction
##################################################

def PatchFunction(thetaInDeg, phiInDeg, Freq, W, L, h, Er):
    """
    Taken from Design_patchr
    Calculates total E-field pattern for patch as a function of theta and phi
    Patch is assumed to be resonating in the (TMx 010) mode.
    E-field is parallel to x-axis
    W......Width of patch (m)
    L......Length of patch (m)
    h......Substrate thickness (m)
    Er.....Dielectric constant of substrate
    Refrence C.A. Balanis 2nd Edition Page 745
    """
    lamba = 3e8 / Freq

    theta_in = math.radians(thetaInDeg)
    phi_in = math.radians(phiInDeg)

    ko = 2 * math.pi / lamba

    xff, yff, zff = sph2cart1(999, theta_in, phi_in)                            # Rotate coords 90 deg about x-axis to match array_utils coord system with coord system used in the model.
    xffd = zff
    yffd = xff
    zffd = yff
    r, thp, php = cart2sph1(xffd, yffd, zffd)
    phi = php
    theta = thp

    if theta == 0:
        theta = 1e-9                                                              # Trap potential division by zero warning

    if phi == 0:
        phi = 1e-9

    Ereff = ((Er + 1) / 2) + ((Er - 1) / 2) * (1 + 12 * (h / W)) ** -0.5        # Calculate effictive dielectric constant for microstrip line of width W on dielectric material of constant Er

    F1 = (Ereff + 0.3) * (W / h + 0.264)                                        # Calculate increase length dL of patch length L due to fringing fields at each end, giving total effective length Leff = L + 2*dL
    F2 = (Ereff - 0.258) * (W / h + 0.8)
    dL = h * 0.412 * (F1 / F2)

    Leff = L + 2 * dL

    Weff = W                                                                    # Calculate effective width Weff for patch, uses standard Er value.
    heff = h * sqrt(Er)

    # Patch pattern function of theta and phi, note the theta and phi for the function are defined differently to theta_in and phi_in
    Numtr2 = sin(ko * heff * cos(phi) / 2)
    Demtr2 = (ko * heff * cos(phi)) / 2
    Fphi = (Numtr2 / Demtr2) * cos((ko * Leff / 2) * sin(phi))

    Numtr1 = sin((ko * heff / 2) * sin(theta))
    Demtr1 = ((ko * heff / 2) * sin(theta))
    Numtr1a = sin((ko * Weff / 2) * cos(theta))
    Demtr1a = ((ko * Weff / 2) * cos(theta))
    Ftheta = ((Numtr1 * Numtr1a) / (Demtr1 * Demtr1a)) * sin(theta)

    # Due to groundplane, function is only valid for theta values :   0 < theta < 90   for all phi
    # Modify pattern for theta values close to 90 to give smooth roll-off, standard model truncates H-plane at theta=90.
    # PatEdgeSF has value=1 except at theta close to 90 where it drops (proportional to 1/x^2) to 0

    rolloff_factor = 0.5                                                       # 1=sharp, 0=softer
    theta_in_deg = theta_in * 180 / math.pi                                          # theta_in in Deg
    F1 = 1 / (((rolloff_factor * (abs(theta_in_deg) - 90)) ** 2) + 0.001)       # intermediate calc
    PatEdgeSF = 1 / (F1 + 1)                                                    # Pattern scaling factor

    UNF = 1.0006                                                                # Unity normalisation factor for element pattern

    if theta_in <= math.pi / 2:
        Etot = Ftheta * Fphi * PatEdgeSF * UNF                                   # Total pattern by pattern multiplication
    else:
        Etot = 0

    return Etot

##################################################
### calculates the field over phi and theta in polar coordinates
##################################################

def GetPatchFields(PhiStart, PhiStop, ThetaStart, ThetaStop, Freq, W, L, h, Er):
    """"
    Calculates the E-field for range of thetaStart-thetaStop and phiStart-phiStop
    Returning a numpy array of form - fields[phiDeg][thetaDeg] = eField
    W......Width of patch (m)
    L......Length of patch (m)
    h......Substrate thickness (m)
    Er.....Dielectric constant of substrate
    """
    fields = np.ones((PhiStop, ThetaStop))                                      # Create initial array to hold e-fields for each position

    for phiDeg in range(PhiStart, PhiStop):
            for thetaDeg in range(ThetaStart, ThetaStop):                       # Iterate over all Phi/Theta combinations
                eField = PatchFunction(thetaDeg, phiDeg, Freq, W, L, h, Er)     # Calculate the field for current Phi, Theta
                fields[phiDeg][thetaDeg] = eField                               # Update array with e-field

    return fields

##################################################
### Plot the field using Matplotlib
##################################################

def SurfacePlot(Fields):
    """Plots 3D surface plot over given theta/phi range in Fields by calculating cartesian coordinate equivalent of spherical form."""

    print("Processing SurfacePlot...")

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    phiSize = Fields.shape[0]                                                                                   # Finds the phi & theta range
    thetaSize = Fields.shape[1]

    X = np.ones((phiSize, thetaSize))                                                                           # Prepare arrays to hold the cartesian coordinate data.
    Y = np.ones((phiSize, thetaSize))
    Z = np.ones((phiSize, thetaSize))

    for phi in range(phiSize):                                                                                  # Iterate over all phi/theta range
        for theta in range(thetaSize):
            e = Fields[phi][theta]

            xe, ye, ze = sph2cart1(e, math.radians(theta), math.radians(phi))                                   # Calculate cartesian coordinates

            X[phi, theta] = xe                                                                                  # Store cartesian coordinates
            Y[phi, theta] = ye
            Z[phi, theta] = ze

    ax.plot_surface(X, Y, Z, color='b')                                                                         # Plot surface
    plt.ylabel('Y')
    plt.xlabel('X')                                                                                             # Plot formatting
    #plt.title("Patch: \nW=" + str(W) + " \nL=" + str(L) +  "\nEr=" + str(Er) + " h=" + str(h) + " \n@" + str(Freq) + "Hz")
    plt.show()
    
##################################################
### Generate the same plot sureface as in Matplot lib and export as a ply file
##################################################
def PlotAndExport(Fields):
    phiSize = Fields.shape[0]                                                                                   # Finds the phi & theta range
    thetaSize = Fields.shape[1]

    X = np.ones((phiSize+1, thetaSize))                                                                           # Prepare arrays to hold the cartesian coordinate data.
    Y = np.ones((phiSize+1, thetaSize))
    Z = np.ones((phiSize+1, thetaSize))

    for phi in range(phiSize+1):                                                                                  # Iterate over all phi/theta range
        for theta in range(thetaSize):
            e = fields[phi%phiSize][theta]

            xe, ye, ze = sph2cart1(e, math.radians(theta), math.radians(phi))                                   # Calculate cartesian coordinates

            X[phi, theta] = xe                                                                                  # Store cartesian coordinates
            Y[phi, theta] = ye
            Z[phi, theta] = ze

    
    # create a mesh that can be displayed
    mesh = pv.StructuredGrid(X,Y,Z)
    
    # Show the result in a plotter window
    p = pv.Plotter()
    p.add_mesh(mesh)
    p.show()
    
    # save the mesh as a ply file, can be saved in many formats
    pv.save_meshio("plot_mesh.ply",mesh)




if __name__ == "__main__":

    # define the patch
    freq = 14e9
    W = 10.7e-3
    L = 10.47e-3
    h = 3e-3
    Er = 2.5

    # calculate the field from the patch antenna design         
    fields = GetPatchFields(0, 360, 0, 90, freq, W, L, h, Er)
    # plot the field using matplotlib
    # SurfacePlot(fields, freq, W, L, h, Er)
    SurfacePlot(fields)

    #Plot and explort using PyVista
    PlotAndExport(fields)




No comments:

Post a Comment