Pages

Thursday, March 10, 2011

A Python Script to Fit an Ellipse to Noisy Data

ExampleEllipse

Problem statement

Given a set of noisy data which represents noisy samples from the perimeter of an ellipse, estimate the parameters which describe the underlying ellipse.

Discussion

There are two general ways to fit an ellipse: algebraic and geometric approaches. In an algebraic approach, the parameters for an algebraic description of an ellipse are fit subject to constraints which guarantee the parameters result in an ellipse. In the geometric approach,  characteristics of the ellipse are fit.

The code snippet below uses a method described by Yu, Kulkarni & Poor. The location of the foci and the length of the line segments from the foci to a point on the perimeter of the ellipse are found through an optimization problem. Because the fitting objective is not convex and has a minimum at infinity, a penalty cost is added to prevent the foci from wandering off.

Code

'''
Script to fit an ellipse to a set of points.
- The ellipse is represented by the two foci and the length of a 
     line segment which is drawn from the foci to the 
     point where the ellipse intersects the minor axis.
    
- Fitting algorithm from Yu, Kulkarni & Poor

'''

__author__ = 'Ed Tate'
__email__  = 'edtategmail-dot-com'
__website__ = 'exnumerus.blogspot.com'
__license__ = 'Creative Commons Attribute By - http://creativecommons.org/licenses/by/3.0/us/'''

####################################################
# create ellipse with random noise in points
from random import uniform,normalvariate
from math import pi, sin, cos, exp, pi, sqrt
from openopt import NLP
from numpy import *
from numpy import linalg as LA
import matplotlib.pylab as pp

def gen_ellipse_pts(a,foci1,foci2,
                    num_pts=200, angles=None,
                    x_noise = None, y_noise=None):

    '''
       Generate points for an ellipse given
          the foci, and
          the distance to the intersection of the minor axis and ellipse.
    
       Optionally, 
          the number of points can be specified,
          the angles for the points wrt to the centroid of the ellipse, and 
          a noise offset for each point in the x and y axis.
    '''
    c = (1/2.0)*LA.norm(foci1-foci2)
    b = sqrt(a**2-c**2)
    x1 = foci1[0]
    y1 = foci1[1]
    x2 = foci2[0]
    y2 = foci2[1]
    if angles is None:
        t = arange(0,2*pi,2*pi/float(num_pts))
    else:
        t = array(angles)
            
    ellipse_x = (x1+x2)/2 +(x2-x1)/(2*c)*a*cos(t) - (y2-y1)/(2*c)*b*sin(t)
    ellipse_y = (y1+y2)/2 +(y2-y1)/(2*c)*a*cos(t) + (x2-x1)/(2*c)*b*sin(t)
    try:
        # try adding noise to the ellipse points
        ellipse_x = ellipse_x + x_noise
        ellipse_y = ellipse_y + y_noise
    except TypeError:
        pass
    return (ellipse_x,ellipse_y)

####################################################################

# setup the reference ellipse

# define the foci locations
foci1_ref = array([2,-1])
foci2_ref = array([-2,1])
# pick distance from foci to ellipse
a_ref = 2.5

# generate points for reference ellipse without noise
ref_ellipse_x,ref_ellipse_y = gen_ellipse_pts(a_ref,foci1_ref,foci2_ref)

# generate list of noisy samples on the ellipse
num_samples = 1000
angles = [uniform(-pi,pi) for i in range(0,num_samples)]
sigma = 0.2
x_noise = [normalvariate(0,sigma) for t in angles]
y_noise = [normalvariate(0,sigma) for t in angles]
x_list,y_list = gen_ellipse_pts(a_ref,foci1_ref,foci2_ref,
                                angles  = angles,
                                x_noise = x_noise,
                                y_noise = y_noise)

point_list = []
for x,y in zip(x_list,y_list):
    point_list.append(array([x,y]))    

# draw the reference ellipse and the noisy samples    
pp.figure()
pp.plot(x_list,y_list,'.b', alpha=0.5)
pp.plot(ref_ellipse_x,ref_ellipse_y,'g',lw=2)
pp.plot(foci1_ref[0],foci1_ref[1],'o')
pp.plot(foci2_ref[0],foci2_ref[1],'o')

#####################################################

def initialize():
    '''
    Determine the initial value for the optimization problem.
    '''
    # find x mean
    x_mean = array(x_list).mean()
    # find y mean
    y_mean = array(y_list).mean()
    # find point farthest away from mean
    points = array(zip(x_list,y_list))
    center = array([x_mean,y_mean])
    distances = zeros((len(x_list),1))
    for i,point in enumerate(points):
        distances[i,0]=LA.norm(point-center)
    ind = where(distances==distances.max())
    max_pt = points[ind[0],:][0]
    # find point between mean and max point
    foci1 = (max_pt+center)/2.0
    # find point opposite from 
    foci2 = 2*center - max_pt
    return [distances.max(), foci1[0],foci1[1],foci2[0],foci2[1]]


def objective(x):
    '''
    Calculate the objective cost in the optimization problem.
    '''
    foci1 = array([x[1],x[2]])
    foci2 = array([x[3],x[4]])
    a     = x[0]
    n = float(len(point_list))
    _lambda =0.1
    _sigma = sigma
    sum = 0
    for point in point_list:
        sum += ((LA.norm(point-foci1,2)+LA.norm(point-foci2,2)-2*a)**2)/n
    sum += _lambda*ahat_max*_sigma*exp((a/ahat_max)**4)
    return sum

# solve the optimization problem
x0 = initialize()
ahat_max = x0[0]
print x0
p = NLP(objective, x0)
r = p.solve('ralg')
print r.xf

# get the results from the optimization problem
xf = r.xf
# unload the specific values from the result vector
foci1 = array([xf[1],xf[2]])
foci2 = array([xf[3],xf[4]])
a     = xf[0]

# reverse the order of the foci to get closest to ref foci
if LA.norm(foci1-foci1_ref)>LA.norm(foci1-foci2_ref):
    _temp = foci1
    foci1 = foci2
    foci2 = _temp

####################################################
# plot the fitted ellipse foci
pp.plot([foci1[0]],[foci1[1]],'xk')
pp.plot([foci2[0]],[foci2[1]],'xk')

# plot a line between the fitted ellipse foci and the reference foci
pp.plot([foci1[0],foci1_ref[0]],[foci1[1],foci1_ref[1]],'m-')
pp.plot([foci2[0],foci2_ref[0]],[foci2[1],foci2_ref[1]],'m-')

# plot fitted ellipse
(ellipse_x,ellipse_y) = gen_ellipse_pts(a,foci1,foci2,num_pts=1000)  
pp.plot(ellipse_x,ellipse_y,'r-',lw=3,alpha=0.5)

# scale the axes for a square display
x_max = max(x_list)
x_min = min(x_list)
y_max = max(y_list)
y_min = min(y_list)

box_max = max([x_max,y_max])
box_min = min([x_min,y_min])
pp.axis([box_min, box_max, box_min, box_max])

pp.show()


References


Testing Configuration

This work is licensed under a Creative Commons Attribution By license.

4 comments:

  1. hi,
    your line
    from math import pi, sin, cos, exp, pi, sqrt
    is useless - all these funcs are overwrited by
    from numpy import *
    (and very few Python-science folk use Python math module, preferring numpy instead).
    Your objective is very slow due to absence of vectorization. Also, for ralg and other (sub)gradient-based solvers it's very good to have gradient provided by user or FuncDesigner automatic differentiation.
    Regards, D.

    ReplyDelete
  2. Thanks for the suggestions. I'll revise and test those suggestions.
    Ed

    ReplyDelete
  3. Hi,
    This tutorial is great.
    I was wondering, if there is a way to fit a parallelogram to a noisy data?
    If you are not available for a python demo, could you please redirect me to any reference for this (hoping you aware of one).
    Many thanks,
    NN

    ReplyDelete
  4. Hi,
    I really like this tutorial.
    How can I calculate the error of this setting?
    Many thanks!

    ReplyDelete